The Return of the Brontosaurus

Remember the brontosaurus vs apatosaurus debate? Turns out both sides were right…we think…so far.

Here’s the skinny: The skeleton of a long-necked, long-tailed dinosaur was unearthed in Wyoming by paleontologist Othniel Charles Marsh in 1879, according to the Natural History Museum in London. At the time, scientists dubbed the giant plant eater, which lived during the Jurassic period about 150 million years ago, Brontosaurus excelsus, according to Yale University.

However, in 1903, paleontologist Elmer Riggs found that B. excelsus was very similar to another dinosaur, Apatosaurus ajax, which Marsh discovered in Colorado in 1877, the Natural History Museum noted. The differences between the dinosaurs appeared so minor that scientists decided it was better to place them both in the same genus, or group of species. Because Apatosaurus was named first, the rules of scientific naming kept its name, leading scientists to retire the name Brontosaurus.

More than 100 years later, researchers suggested reviving Brontosaurus as its own genus. A 2015 study of sauropods in the journal PeerJ found that the original Apatosaurus and Brontosaurus fossils may have been different enough to classify them as separate groups.

The nearly 300-page study examined 477 physical features of 81 sauropod specimens. The initial aim of the research was to analyze the relationships between the species making up the family of sauropods known as Diplodocidae, which includes Diplodocus, Apatosaurus and, now, Brontosaurus.

All in all, the scientists found that Brontosaurus’ neck was higher-set, narrower and smaller than Apatosaurus’, study lead author Emanuel Tschopp, a vertebrate paleontologist now at the University of Hamburg in Germany, told Live Science. They suggested three known species of Brontosaurus: B. excelsus, B. parvus and B. yahnahpin.

“They call Brontosaurus ‘resurrected,'” Jacques Gauthier, curator of reptiles at the Yale Peabody Museum of Natural History, who did not participate in this study. “I like the ring of that. ‘Restored’ is a perfectly correct term, but ‘resurrected’ is the official description of what they have done.”

Tschopp noted that they could not have made this discovery 15 or more years before their study; only recently did findings of dinosaurs similar to Apatosaurus and Brontosaurus help reveal what made these groups unique.

It has been nearly a decade since the paper published, and Tschopp noted that “not everybody accepts such proposals immediately. There have been — and still are — researchers who don’t trust the results quite yet and continue to use the name Apatosaurus for what I call Brontosaurus.”

Mike Taylor, a vertebrate paleontologist at the University of Bristol in England who did not take part in the 2015 study, told Live Science in an email, “you rarely get consensus from paleontologists on these matters, so the answer you get will depend on who you ask. There’s been no pushback in the formal literature, but I’ve heard a bit of grumbling.”

Still, to Taylor, the call to “resurrect” Brontosaurus “just feels like a reasonable thing to do.” He noted that the 2015 study “made a solid argument that most specialists found pretty persuasive and not especially surprising.” Taylor and his colleagues have mentioned B. excelsus and B. parvus in their own studies a number of times.

Romancing the Prehistoric

I was – note the past tense – going to write a post about re-entry after Covid-19 vaccination and how awesome it was to give my younger daughter a hug after over a year, but then I saw this story from Science magazine and could not resist.

Did you ever wish you could see a living dinosaur? I sure did! (I still do…but from a safe distance.) As a child I loved movies with stop-action animation of dinosaurs, like the original King Kong or the Ray Harryhausen movie, The Valley of Gwangi. In high school I wrote a short novel about two teenagers and their horses who discover a hidden valley where dinosaurs still roam. Jurassic Park and its sequels blew me away, the movies even more so than the novels. The novels were longer on explanation, the movies far more powerful in vividness. The moment when Alan Grant, upon learning that Professor Hammond has created a T. rex and almost faints,  that’s how I would have felt. Great acting and directing aside, these books and films spoke to a universal or near-universal human longing to see amazing charismatic animals from the distant past.

The earlier stories, at least the ones I read and watched, made no effort at a scientific basis for the present-day existence of prehistoric animals. It was all “Land That Time Forgot” hand-waving. Crichton took a different tack: dinosaurs did not persist in some undiscovered corner of or beneath the Earth: humans re-created them using DNA preserved in amber. We’ve been able to recover DNA from Pleistocene mammals, but never anything as old as 65 million years. Many scientists doubt that DNA could survive that long, no matter how preserved. When an animal dies, its DNA begins to decay. A 2012 study on moa bones showed that genetic material deteriorates at such a rate that it halves itself every 521 years. This speed would mean paleontologists can only hope to recover recognizable DNA sequences the past 6.8 million years. In 2020, Chinese Academy of Sciences paleontologist Alida Bailleul and her colleagues proposed they had found a chemical signature suggestive of DNA in a 70 million year old baby hadrosaur fossil. If confirmed, this material would be so degraded into components, not sequences. It’s also possible the chemical signature was that of bacteria, not the dinosaur itself.

The Siberian permafrost that has yielded mammoth DNA is about 2.6 million years old, but freezing turns out to be a pretty good preservative of DNA. Scientists have now been able to sequence DNA from extinct mammoths 1.2 million years ago. That’s a world record. The previous record, in 2013, was from a 750,000-year-old horse. The new study includes DNA from three species of mammoth from three time periods (1.2 million, 1 million, and 700,000 years ago) and there are all kinds of reasons to be excited about it, not just the age but the evolutionary relationships and a previously unknown type.

Which brings us to the question we’re all asking: Once we’ve sequenced this DNA, whether from mammoths, saber-toothed cats, ground sloths, or whatever – what do we do with it? What we can do now is better understand the evolution and relationships of these amazing animals. What popular media want, however, is to use the material to create living extinct species. The process of de-extinction can proceed either by cloning – taking material from a recently extinct species and replicating it – or by using ancient, fragmentary DNA. We’ve got a long way to go with either technique. Many extinct species lack contemporary surrogates to carry the artificially created embryos to term. For others, suitable habitat no longer exists (really? Where would you turn a giant ground sloth loose? A saber-toothed cat? Or would these animals exist only in the unnatural environment of zoos?) Back in 2009, Spanish scientists cloned a newly extinct Pyrenean ibex, although the clone died within a few hours of birth.

There are, however, a few good candidates for which possibly viable DNA sources exist. Species like the passenger pigeon and Carolina parakeet might fare well, given the human responsibility for their disappearance, although they might turn out to be temporally invasive species. Continue reading “Romancing the Prehistoric”